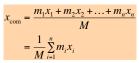
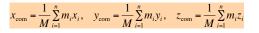


9.1 The Center of Mass

• For *n* particles, we can generalize the equation, where $M = m_1 + m_2 + \ldots + m_n$.

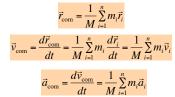


• In three dimensions, we find the centre of mass along each axis separately:



9.1 The Center of Mass

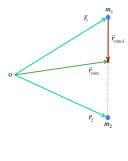
• More concisely, we can write in terms of vectors:



- We found that: $\vec{F}_{ext} = M\vec{a}_{com}$ implying that the total external force acts as if all the mass of the object was at it's centre of mass.
- Therefore, if $F_{\text{ext}} = 0$, v_{com} is **constant**.

Example

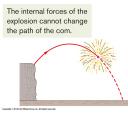
Show that the *com* of a two-particle system lies along a straight line between the two particles a fractional distance $m_2/(m_1+m_2)$ from object 1.



9-2 Newton's Second Law for a System of Particles

Examples: Using the centre of mass motion equation:

- Billiard collision: forces are only internal, $F_{\text{ext}} = 0$ so a = 0.
- Baseball bat: *a* = -*g*, so *com* follows gravitational trajectory.
- Exploding rocket: explosion forces are internal, so only the gravitational force acts on the system, and the *com* follows a gravitational trajectory as long as air resistance can be ignored for the fragments.



Problem 9.12

Two skaters, one of mass 65 kg and the other of mass 40 kg, stand 10 m apart on a frictionless ice surface. They pull themselves along a rope until they meet. What is the position where they meet?

Problem

A person of mass 50 kg stands at the one end of a boat of mass 30 kg and length 5 m. Assume there is no friction between the boat and the water, and that the boat is pointed towards shore.

If the person walks a distance $d_{\rm P}$ along the boat, how far does the boat move from shore?

Show that you get the expected result when $d_{\rm P} = 5$ m.

9.1 The Center of Mass

- For solid bodies, we take the limit of an infinite sum of infinitely small particles \rightarrow integration!
- We limit ourselves to objects of uniform density, $\rho = \frac{M}{V}$. Therefore the mass *dm* in a volume element *dV* is *dm* = ρdV .

 $\vec{r}_{\rm com} = \frac{1}{M} \int \vec{r} \, dm = \frac{1}{V} \int \vec{r} \, dV = \int \vec{r} \, dx \, dy \, dz$

- Note that this is a three-dimensional integral for each component of \vec{r}_{com} .
- You can bypass one or more of these 3 integrals if the object has symmetry.