Conservation of Mechanical Energy

Summary of last time:

Problem 8.112

For conservative forces, F depends on position only, not velocity or direction. Therefore

 $W = \int_{0}^{x_2} F(x) dx$

is independent of the path going from x_1 to x_2 .

Introduce potential energy U(x), where $\Delta K = W = -\Delta U$

Define $E_{\text{mech}} = K + U$, so that $\Delta E_{\text{mech}} = \Delta K + \Delta U = 0$

Equivalently, $E_{\text{mech}} = K_1 + U_1 = K_2 + U_2$ is conserved.

The potential energy U(x) is defined relative to a reference point where it has the value 0. This reference point is arbitrary because only changes ΔU are relevant:

$\Delta E_{\rm mech} = \Delta K + \Delta U = 0$

(This is analogous to choosing an arbitrary origin for measuring position x, since only displacement Δx enters Newton's Laws.)

Gravity:
$$U(y) = mgy$$
, $F = -\frac{dU}{dy} = -mg$ $(U = 0 \text{ at } y = 0)$
Spring: $U(x) = \frac{1}{2}kx^2$, $F = -\frac{dU}{dx} = -kx$ $(U = 0 \text{ at } x = 0)$

Spring:

$$-kx$$
 ($U=0$ at $x=0$)

Problem Find the minimum h needed to go around a loop of radius R

