PHYS1050 Mechanics

Dr. Peter Blunden

Contact information:

email: blunden@physics.umanitoba.ca Office: 509 Allen Building Tel: 204-480-1449

Consulting hours: MF 2:30-3:30

Lab/Tutorial

Starts this week!

- B01 Friday 2:30-5:30 p.m.
- B02 Thursday 2:30-5:30 p.m.
- B03 Friday 8:30-11:30 a.m.

Lab exemptions

- you have taken the course within the last 2 years
- you got more than 80%
- go to 301 Allen (Physics office) by Tuesday, January 12!
- you still need to come to the tutorials in your assigned slot

Still trying to register?

• keep trying, as lab slots may still open up

Course website

www.physics.umanitoba.ca/~blunden/phys1050

- Watch for announcements!
- Homework section will have solutions posted as we complete chapters.

Secured areas (solutions, marks, etc.)

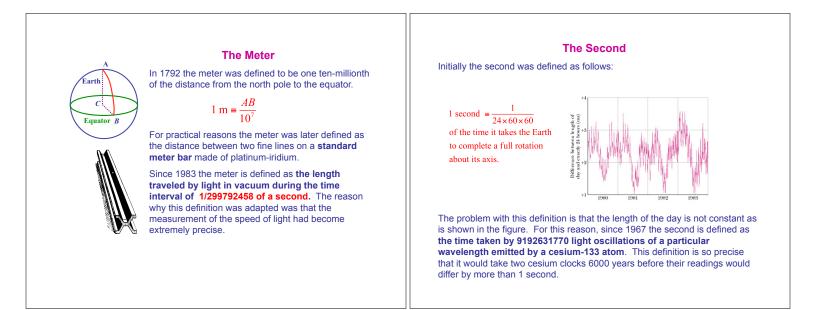
User Name: student Password: fizzix (write it down NOW)

Midterm Test: Thursday, February 11, 7:00-9:00 p.m. No makeup test!

Chapter 1

Measurement

In mechanics we deal mainly with 3 fundamental quantities:

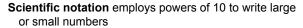

Length, Time, and Mass

They are known as base quantities.

We use the International System of Units (SI).

In this system the units for the base quantities are:

Physical Quantity	Dimensional Symbol	SI unit name	Symbol
Length	[L]	metre	m
Mass	[M]	kilogram	kg
Time	[T]	second	S


The Kilogram

The SI standard of mass is a platinum-iridium cylinder shown in the figure. The cylinder is kept at the International Bureau of Weights and Measures near Paris and assigned a mass of 1 kilogram. Accurate copies have been sent to other countries.

Measuring Things, Including Lengths

- SI has many derived units, which are written in terms of base units
 - density (mass per unit volume): $\rho = \frac{m}{V}$ (units kg/m³)
 - Joules (energy): 1 J = 1 kg m²/s²
 - Watts (power): 1 W = 1 J/s = 1 kg m²/s³

 $3\ 560\ 000\ 000\ m = 3.56 \times 10^9\ m$

 $0.000\ 000\ 492\ s = 4.92 \times 10^{-7}\ s.$

Example: Find the rest energy of an electron using $E=mc^2$ given that $c = 3.0 \times 10^8$ m/s (speed of light)

 $m = 9.0 \times 10^{-31}$ kg (mass of electron)

Answer: $E = 8.1 \times 10^{-14} \text{ J}$

Unit conversion

A conversion factor is

- A ratio of units that is equal to 1
- · Used to convert between units

$$2 \min = (2 \min)(1) = (2 \min)\left(\frac{60 \text{ s}}{1 \min}\right) = 120 \text{ s}.$$

Example: Convert 23 mpg to litres/100 km $(\ell/100 \text{ km})$

Answer: 10.2 *l*/100 km

Dimensional (unit) Analysis

- Useful as a check on equations: [LHS] = [RHS]
- Example: relation between distance, acceleration, and time starting from rest

$$x = \frac{1}{2}at^{2}$$

[L] = $\frac{1}{2}[\frac{L}{T^{2}}][T^{2}] = [L]$

If your units do not work out, your answer cannot be correct!

Sometimes you can figure out the correct equation merely by making the units work! Example: Using dimensional analysis estimate how long a stick of length *L* can remain balanced.

Answer:
$$t \sim \sqrt{\frac{L}{g}}$$