
!  We take a one-dimensional 
example 

!  We need to integrate the work 
equation (which normally 
applies only for a constant 
force) over the change in 
position 

!  We can show this process by 
an approximation with 
rectangles under the curve 

Work Done by a General Variable Force 
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Total work done is equal to 
area under F(x) vs. x curve: 

In each panel: 

Therefore 
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Consider a piecewise constant force in 1D with 2 terms: 

i.e. W equals change in kinetic energy over the whole interval! 

Extend this to N rectangles: 

Now let  

This is the definition of the definite integral between xi and xf : 

The change in kinetic energy over the whole interval is 

The work-kinetic energy theorem still applies: 
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N→∞,  or equivalently,  Δx→ 0
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We can also obtain this result algebraically: 

Start with 

Now                     ,  and by the chain rule 

We can therefore make a change in variable from x to v: 
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Gravity 

For gravity, Fg = -mg, taking y as positive upward. 
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!  A spring force is the variable force from a spring 
o  A spring force has a particular mathematical form 

o  Many forces in nature have this form 

!  Figure (a) shows the spring in its relaxed 
state: since it is neither compressed nor 
extended, no force is applied 

!  If we stretch or extend the spring it 
resists, and exerts a restoring force that 
attempts to return the spring to its relaxed 
state 

!  The relaxed state is called equilibrium. 

Work done by a spring force 



!  The spring force is given by Hooke's law: 

!  The negative sign represents that the force always opposes 
the displacement from equilibrium 

!  The spring constant k is a is a measure of the stiffness of the 
spring.  Units are N/m (Newtons per metre). 

!  This is a variable force (function of position) and it exhibits a 
linear relationship between F and d 

!  For a spring along the x-axis we can write: 
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!  We can find the work by integrating: 

!  The final result: 

!  The work can be positive or negative. 
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Graphical visualization of work done by a spring in compressing 
     from xi to xf : 
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W = area under F vs. x curve 
    = area of rectangle 
       + area of triangle 
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W is negative in this case (since spring is being compressed) 

Example 

A block of mass 5.7 kg has a speed of 1.2 m/s. It encounters 
an ideal spring of spring constant k = 1500 N/m. By how 
much does the block compress the spring before coming to 
rest? 

Example 

An ideal spring has a spring constant k and an equilibrium 
length L. Suppose we hang an object of mass m from this 
spring in a vertical orientation. 

(a)  Find the new equilibrium length. 
(b)  Show that Hooke’s Law is obeyed for displacements from 

the new equilibrium position. 


