

```
The work-kinetic energy theorem still applies:
```

For gravity, $F_g = -mg$, taking y as positive upward.

 $\therefore W_g = \int_{y_i}^{y_f} F_g dy = -mg \int_{y_i}^{y_f} dy$

 $= -mg(y_f)$

 $= -mg\Delta y$

 $\Delta K = W$

Gravity

Work done by a spring force

- A spring force is the variable force from a spring
 - . A spring force has a particular mathematical form
 - . Many forces in nature have this form
- Figure (a) shows the spring in its relaxed state: since it is neither compressed nor extended, no force is applied
- If we stretch or extend the spring it resists, and exerts a restoring force that attempts to return the spring to its relaxed state
- The relaxed state is called equilibrium.

• The spring force is given by Hooke's law:

$\vec{F}_s = -k\vec{d}$

- The negative sign represents that the force always opposes the displacement from equilibrium
- The **spring constant** *k* is a is a measure of the stiffness of the spring. Units are N/m (Newtons per metre).
- This is a variable force (function of position) and it exhibits a linear relationship between *F* and *d*
- For a spring along the *x*-axis we can write:

$F_s = -kx$

- We can find the work by integrating:
 - $W_s = \int_{x_i}^{j} F_s dx$ $= \int_{j}^{x_f} (-kx) dx$

 $\begin{aligned} x_j^2 > x_i^2 \Rightarrow W_s < 0 \Rightarrow \Delta K < 0 \Rightarrow v_j^2 < v_i^2 \\ x_j^2 < x_i^2 \Rightarrow W_s > 0 \Rightarrow \Delta K > 0 \Rightarrow v_j^2 > v_i^2 \end{aligned}$

- The final result: $W_s = -(\frac{1}{2}kx_f^2 \frac{1}{2}kx_i^2)$
- The work can be positive or negative.

Graphical visualization of work done by a spring in compressing from x_i to x_f :

Example

A block of mass 5.7 kg has a speed of 1.2 m/s. It encounters an ideal spring of spring constant k = 1500 N/m. By how much does the block compress the spring before coming to rest?

The spring force does negative work, decreasing speed and kinetic energy.
k Frictionless m
← d − − − Stop First touch
Capying to 2214 June 3014 Stars, You, and Anglan summers. Indiatory, No. 56, 27, 31

Example

An ideal spring has a spring constant k and an equilibrium length L. Suppose we hang an object of mass m from this spring in a vertical orientation.

- (a) Find the new equilibrium length.
- (b) Show that Hooke's Law is obeyed for displacements from the new equilibrium position.