

Monday, March 19, 2007

Principle of Linear Superposition

When two waves overlap, the resultant is the sum of the two.
Light waves: add the electric fields.
If the waves are of the same wavelength and are in phase, the amplitude of the combined wave is increased. This is constructive interference.

If the waves are of the same wavelength and out of phase, the amplitude of the combined wave is decreased, even zero if the two waves have the same amplitude. This is destructive interference.

Monday, March 19, 2007

Coherent and incoherent light sources

Coherence: the waves maintain a constant phase relative to one another. Constructive and destructive interference can then occur, depending on the difference in path length. Example, light from a laser.

Constructive interference: the difference in path length is an integer number of wavelengths:

$$
l_{2}-l_{1}=m \lambda, m=0,1,2,3 \ldots \quad(m=" \text { order" })
$$

Destructive interference occurs if:

$$
l_{2}-l_{1}=(m+1 / 2) \lambda
$$

If the waves emitted by the sources do not maintain a constant phase relationship, the sources are "incoherent." Example, light from a lamp.

Young's double slit experiment

Light passes through a single slit.

The light wave from the slit spreads out to pass through two slits which act as coherent sources of light.

The light waves from the two slits overlap on a screen.

Constructive and destructive interference is seen as a series of bright and dark bands - not as images of the two slits.

Young's double slit experiment

Constructive and destructive interference

Constructive and destructive interference

Constructive and destructive interference

Young's double slits

Bright and dark fringes on the screen

For constructive interference: $d \sin \theta=m \lambda, \quad m=0,1,2 \ldots$
For destructive interference: $d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, m=0,1,2 \ldots$. $m=$ "order" of the fringe

Principle of Linear Superposition

When two waves overlap, the resultant is the sum of the two.
Light waves: add the electric fields.

Diffraction grating

Pairs of slits act as two Young's slits. The bright fringes ("principal maxima") are at the same angles as for Young's double slits.
Interference also occurs between more distant slits \rightarrow sharper peaks
Bright fringes (principal maxima): $d \sin \theta=m \lambda$

Young's double slits with white light

$d \sin \theta=m \lambda$ for bright fringes of wavelength λ. The different wavelengths have their bright fringes at different angles. If d is large, the angle scale is too small for the fringes to be visible.

Prob. 27.52/6: Two slits are 0.158 mm apart. A mixture of red light $(\lambda=$ $665 \mathrm{~nm})$ and yellow-green light $(\lambda=565 \mathrm{~nm})$ falls on the slits. A screen is 2.24 m away.

What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe?

In a Young's double slit experiment, blue light of wavelength 440 nm produces a second order bright fringe on a screen.

What wavelength of visible light would produce a dark fringe at the same place?

Visible light: $\lambda=380-750 \mathrm{~nm}$.

Prob. 27.9: A sheet of plastic ($n=1.6$) covers one slit of a double slit. When the double slit is illuminated by monochromatic light ($\lambda_{0}=586 \mathrm{~nm}$ in vacuum), the centre of the screen appears dark rather than bright.

What is the minimum thickness of the plastic?

There are x wavelengths in thickness t of air (with wavelength $\lambda_{0}=586 \mathrm{~nm}$)

$$
t=x \lambda_{0}
$$

There are $(x+1 / 2)$ wavelengths in thickness t of plastic (with wavelength $\left.\lambda_{1}=\lambda_{0} / n\right)$.

$$
t=(x+1 / 2) \lambda_{1}
$$

\rightarrow eliminate x

Young's Double Slits

(Outgoing rays parallel - "Fraunhofer diffraction")

The light waves from the two slits produce bright bands of light when:

$$
d \sin \theta=m \lambda, \quad m=0,1,2 \ldots
$$

They produce dark bands when:

$$
d \sin \theta=(m+1 / 2) \lambda, \quad m=0,1,2 \ldots
$$

Thin film interference in a soap bubble

Thin film interference

- Anti-reflective coatings on lenses (cameras, eye glasses...)
- Reflective coatings (mirrors, "aviator" sun glasses)

Optical interference devices

- "Interferometers" - check smoothness of a surface at the level of the wavelength of light

Will look at:

- thin film interference
- air wedge
- Newton's rings
- Michelson interferometer

The light waves from the two slits produce bright bands of light when:

$$
d \sin \theta=m \lambda, \quad m=0,1,2 \ldots
$$

They produce dark bands when:

$$
d \sin \theta=(m+1 / 2) \lambda, \quad m=0,1,2 \ldots
$$

Thin film interference

A light wave is split into reflected [1] and refracted [2] parts at the upper surface.

Interference occurs between them when they recombine.

Ray [2] travels an extra distance $\approx 2 t$ compared with ray [1]. (small angle of incidence assumed)

No! There is a wrinkle due to reflection

Phase change on reflection

For an external reflection (reflection at a surface of higher refractive index) there is a phase change of the reflected ray equivalent to half a wavelength.

For an internal reflection (reflection at a surface of lower refractive index) there is no phase change.

Thin film interference - the wrinkle

Then, $2 t=\left(m+\frac{1}{2}\right) \lambda_{\text {gasoline }}$ for bright fringe
$\lambda_{\text {gasoline }}=\frac{\lambda_{\text {air }}}{n_{\text {gasoline }}}$
So, $2 t=\left(m+\frac{1}{2}\right) \frac{\lambda_{\text {air }}}{n_{\text {gasoline }}}$ bright fringe
and $2 t=\frac{m \lambda_{\text {air }}}{n_{\text {gasoline }}}$ for dark fringe
If both reflections are internal or both are external, these results are exchanged.

Summary of thin film interference results

Reflective coating (mirror, aviator sun glasses...) Constructive

2 internal or 2 external reflections: $2 t=m \lambda_{\text {film }}, m=1,2,3 \ldots$
1 internal and 1 external reflection: $2 t=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}, m=0,1,2 \ldots$

Anti-reflective coating (camera lens, eye glasses...) Destructive
2 internal or 2 external reflections: $\quad 2 t=\left(m+\frac{1}{2}\right) \lambda_{\text {film }}, m=0,1,2 \ldots$
1 internal and 1 external reflection: $2 t=m \lambda_{\text {film }}, m=1,2,3 \ldots$
$t=$ thickness of film, $\quad \lambda_{\text {film }}=\lambda_{\text {vacuum }} / n_{\text {film }}$

Prob. 27.48/11: A non-reflective coating coating of magnesium fluoride ($n=1.38$) covers the glass $(n=1.52)$ of a camera lens.

Assuming the coating prevents reflection of yellow-green light (wavelength in vacuum $=565 \mathrm{~nm}$), determine the minimum non-zero thickness that the coating can have.

- Are the reflections at the top and bottom layers internal (no phase change) or external (phase change)?
- Choose the appropriate formula for destructive interference.

Prob. 27.11/10: Light of wavelength 691 nm (in vacuum) is incident on a soap film $(n=1.33)$ suspended in air. What are the two smallest nonzero film thicknesses for which the reflected light undergoes constructive interference?

- Are the reflections at the top and bottom layers internal (no phase change) or external (phase change)?
- Choose the appropriate formula for constructive interference.

Fringes produced by an air wedge

External reflection for [1] at upper surface \Rightarrow phase change of $\lambda / 2$
Internal reflection for [2] at lower surface
\Rightarrow no phase change

For constructive interference between [1] and [2]:

$$
2 t=\left(m+\frac{1}{2}\right) \lambda_{\text {air }}, \quad m=0,1,2 \ldots
$$

$2 t$ increases by $\lambda_{\text {air }}$ between bright fringes (m increasing by 1)

Uneven surfaces \Rightarrow jogs or curving of the fringes

Fringes follow contours of constant air gap $2 t$ changes by λ between fringes

Newton's Rings

The air gap is between the lower surface of the lens and a flat glass plate.

Interference of the light reflected from the flat glass plate and the lower surface of the lens is viewed from above.
\Rightarrow concentric circular fringes.

Nonuniformity of surfaces distorts the rings.

Michelson interferometer measurement of wavelength of light

The light from the source is divided into reflected and refracted beams, wave A and wave F, by a beam splitter (partially silvered mirror).

The two beams are reflected back and recombine, interfere, and are observed through a telescope.

As the adjustable mirror is moved, the waves A and F move in and out of phase and bright and dark fringes are seen. Between bright fringes:
$2 \Delta D_{A}=\lambda \Rightarrow$ wavelength of the light

Listener hears sound around the corner

Diffraction - Huygens

construction

Each point on a wavefront acts as a source of secondary waves.

The new wavefront is tangent to the secondary waves.
\Rightarrow waves spread out - are diffracted around a barrier or the edges of an opening.

The same phenomenon occurs with water and light waves \Rightarrow light does not always travel in perfect straight lines.

Diffraction by a single vertical slit

Diffraction by a single vertical slit

Much magnified view of the slit

Diffraction by a single vertical slit

At angle θ secondary waves from 1 and 3 are out of phase and cancel. So are waves from 2 and 4 , and all other waves that are half a slit apart.

[^0]
Diffraction by a single vertical slit

At a larger angle, all points across the slit separated by a distance $W / 4$ are also out of phase, can be paired off to interfere destructively and produce a dark fringe when:
$W \sin \theta=2 \lambda$
In general, the dark fringes are seen when:

$$
W \sin \theta=m \lambda, \quad m=1,2,3 \ldots
$$

Prob. 27.-/20: A slit of width $W=4.3 \times 10^{-5} \mathrm{~m}$ is located 1.32 m from a flat screen. Light shines through the slit and falls on the screen.

Find the width of the central fringe of the diffraction pattern when the wavelength of the light is 635 nm .

- At what angle is the first minimum found?

Thin film interference

2 internal or 2 external reflections:

(refractive indices in increasing or decreasing order)

$$
\begin{aligned}
& 2 t=m \lambda_{f i l m} \rightarrow \\
& \text { constructive interference } \\
& 2 t=\left(m+\frac{1}{2}\right) \lambda_{f i l m} \rightarrow \\
& \text { destructive interference }
\end{aligned}
$$

1 internal and 1 external reflection:

(refractive indices not in increasing or decreasing order)

$$
\begin{aligned}
2 t=\left(m+\frac{1}{2}\right) \lambda_{f i l m} & \rightarrow \quad \text { constructive interference } \\
2 t=m \lambda_{f i l m} & \rightarrow \quad \text { destructive interference }
\end{aligned}
$$

$$
\lambda_{\text {film }}=\frac{\lambda_{\text {air }}}{n_{\text {film }}}
$$

Young's double slits and diffraction grating

Bright fringes when: $\quad d \sin \theta=m \lambda, m=0,1,2 \ldots$
Dark fringes when: $\quad d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, m=0,1,2 \ldots$
$d=$ distance between slits

Diffraction from a single slit

Dark fringes when:

$$
W \sin \theta=m \lambda, \quad m=1,2,3 \ldots
$$

(no simple formula for bright fringes)
$W=$ width of slit

Prob. 27.27: In a single slit diffraction pattern, the central fringe is 450 times as wide as the slit. The screen is 18,000 times farther from the slit than the slit is wide.

What is the ratio λ / W, where W is the slit width?
Assume that angles are small, so $\sin \theta \approx \tan \theta \approx \theta$ radians.

Diffraction by a small opaque disk

Because of diffraction of light from the edge of the circular disk, the shadow cast by the disk has:

- a central bright spot (constructive interference of light waves from around edge of disk)
- circular bright fringes inside the shadow

- bright and dark fringes outside
the shadow

Light (Parallel beam, that is, a plane wave)

Diffraction by a circular aperture

The bright and dark fringes are circular and concentric with the aperture.

The first dark fringe from the centre is at the angle shown in the diagram:

$$
\theta=1.22 \frac{\lambda}{D} \text { radians }
$$

$D=$ diameter of aperture
The smaller the aperture, the larger the angle of diffraction.

Resolving power

Light passing through any aperture, such as a camera lens, or an eye lens, is diffracted.

If two objects are close together, the diffraction patterns from them may overlap.

If the overlap of the patterns is large enough, it may not be possible to tell there are two objects - "resolution" is limited by diffraction.

Position of images in absence of diffraction

Resolving power - Rayleigh criterion

Two objects can be resolved when their angular separation is greater than:

Resolving Power

For green light, $\lambda=555 \mathrm{~nm}$, and the diameter of the pupil of the eye, $D=$ 2.5 mm , the angular resolution is:

$$
\theta_{\min }=1.22 \frac{\lambda}{D}=2.7 \times 10^{-4} \mathrm{rad}
$$

At 120 m altitude, the minimum resolvable distance on the ground is:

$$
s=H \theta_{\min }=0.033 \mathrm{~m}
$$

Eagle/owl: $D=6.2 \mathrm{~mm}$

$$
\begin{aligned}
\theta_{\min } & =1.1 \times 10^{-4} \mathrm{rad} \\
s & =0.013 \mathrm{~m}
\end{aligned}
$$

\rightarrow better ability to find small furry
 animals on the ground

Prob. 27.30: Two stars are $3.7 \times 10^{11} \mathrm{~m}$ apart and are equally distant from the earth. A telescope has an objective lens with a diameter of 1.02 m and just detects these stars as separate objects.

Assume that light of wavelength 550 nm is being observed and that diffraction effects rather than atmospheric turbulence limit the resolving power of the telescope.

Find the maximum distance that these stars could be from earth.

Pairs of slits act as two Young's slits. The bright fringes ("principal maxima") are at the same angles as for Young's double slits.
Interference also occurs between more distant slits \rightarrow sharper peaks
Bright fringes (principal maxima): $d \sin \theta=m \lambda$

Diffraction grating

Much sharper fringes than Young's double slits
\Rightarrow much more precise measurement of wavelength

The small peaks are "subsidiary maxima"

> Young's double slits \longrightarrow with same distance between slits, d

Grating equation: $d \sin \theta=m \lambda$ for the bright fringes

$$
\lambda=\frac{d \sin \theta}{m} \rightarrow \text { wavelength, } \lambda
$$

Spectrum of visible light seen by a grating

The second order red overlaps the third order blue.
The spectrum of light from a star allows elements in the star's "atmosphere" to be identified. Helium was observed in the sun's atmosphere before it had been discovered on earth. Named after the Greek word for the sun.

	27.42
Monday, March 19, 2007	49

Prob. 27.42: A diffraction grating has 2604 lines per centimetre and produces a principal maximum at $\theta=30^{\circ}$. The grating is used with light that contains all wavelengths between 410 and 660 nm .

What wavelengths of the incident light that could have produced this maximum?

CDs, DVDs

Information is stored along spiral tracks 1600 nm apart as binary 0 's and 1's that are read by how much a laser beam is reflected from the surface.

Destructive interference, weak reflection

Constructive interference, strong reflection If $\lambda=520 \mathrm{~nm}, t=\lambda / 4=130 \mathrm{~nm}$ for destructive interference.

Keeping the laser beam on

 trackTwo tracking beams are the first order maxima produced by a diffraction grating.

If the laser drifts off track, one of the tracking beams will start to hit pits and will be reflected less strongly.

A feedback system steers the beam to centre it so that both tracking beams are once again strongly reflected.

Summary of Chapter 27

- Principle of Linear Superposition \rightarrow interference and diffraction
- Diffraction by Young's double slits, by a single slit, and the diffraction grating
- Interference in thin films, phase change on reflection (for external reflections only)
- Michelson interferometer
- Interference by a circular aperture \rightarrow Rayleigh criterion and resolving power

[^0]: \rightarrow first dark fringe when $W \sin \theta=\lambda$

