Mastering Physics Assignment 1

Deadline is October 1 at 5 pm Flash problem believed to be fixed as of Friday **Try Firefox if still a problem!**

Mastering Physics Assignment 2

Is available on Mastering Physics website

Seven practice problems + six for credit Due Wednesday, October 10 at 11 pm

Monday, October 1, 2007

GENERAL PHYSICS I: PHYS 1020

Schedule - Fall 2007 (lecture schedule is approximate)

5	M	Oct 1	11			Transister of Transist
	W	3	12	Chapter 5	Uniform circular motion	(chapters 1, 2, 3)
	F	5	13			
6	Μ	8	Thanksgiving Day			
	W	10	14	Chapter 5	Uniform circular motion	Experiment 2: Measurement of g by free fall
	F	12	15	Chapter 6	Work and energy	
7	M	15	16			Tutorial and Test 2 (chapters 4, 5)
	W	17	17			
	F	19	18	Chapter 7	Impulse and momentum	
8	M	22	19			
	Tue	23	MID-TERM TEST, Ch 1-5, Tuesday, October 23, 7-9 pm			No leb or tutorial
	W	24	20	Chapter 7	Impulse and momentum	INO IAD OF UITOFIAT
	F	26	21	Chapter 8,	Rotational kinematics	

Week of October 1 Tutorial and test 1, ch. 1, 2, 3

Week of October 8 Experiment 2: Measurement of g by free fall

Newton's Third Law of Motion

When you exert a force on an object, it exerts a force back on you.

Monday, October 1, 2007

39

Newton's Third Law of Motion

An astronaut of mass m_a = 92 kg exerts a force P = 36 N on a spacecraft of mass m_s = 11,000 kg. What is the acceleration of each?

Force on the spacecraft, P = 36 N to the right. Second Law: Acceleration of craft, $a_s = P/m_s = (36 N)/(11,000 kg) = 0.0033 m/s^2$

Reaction force of spacecraft on the astronaut is -P (Newton's 3rd law). Second Law:

Acceleration of astronaut, $a_a = -P/m_a = (-36 \text{ N})/(92 \text{ kg}) = -0.39 \text{ m/s}^2$

The Fundamental Forces of Nature

- Strong Nuclear Force: the strongest of all. Responsible for holding neutrons and protons captive in the nuclei of atoms. Acts over only very short distances of about 10⁻¹⁵ m.
- Electroweak Force: a combination of:
- electromagnetic force: binds electrons to nuclei to form atoms and molecules.
- weak nuclear force: responsible for nuclear beta-decay.
- Gravity: the weakest force of all. A significant force because all matter (we believe) is attracted by gravity.
- **Perhaps**, a repulsive gravitational force acting at long distances (distant galaxies appear to be moving away faster than they should if only normal gravity acts).

Monday, October 1, 2007

The earth exerts a gravitational force on the moon that is proportional to M_M .

The moon exerts a gravitational force on the earth that is proportional to M_E .

 \rightarrow As the forces are equal in magnitude (3rd law), the gravitational force must depend on both M_M and M_E.

Newton's Law of Gravitation (deduced from observations of the motion of the planets)

The gravitational force between two masses, m_1 and m_2 , is proportional to the product of the masses and inversely proportional to the square of the distance between their centres.

 $F_{grav} = rac{Gm_1m_2}{r^2}$ Distance between centres of gravity

G is the universal gravitational constant:

 $G = 6.673 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$

 m_1 , m_2 are "gravitational masses". In all cases seen, they are equal to the inertial masses (the mass in F = ma).

Monday, October 1, 2007

Three objects of mass m_1 , m_2 , m_3 are located along a straight line. m_2 is greater then m_1 . The net gravitational force acting on mass m_3 is zero.

Which drawing correctly represents the locations of the objects?

Gravity attracts m_3 toward both m_1 and m_2 , and $F \sim 1/r^2$

Newton's Law of Gravitation

What is the gravitational force (weight, w) of a mass m on the earth's surface?

Above earth's surface, weight decreases with distance r from the centre of the earth as $1/r^2$.

Monday, October 1, 2007

45

Weight and Gravitational Acceleration

If gravitational and inertial masses were not equal, this would not be the case! 4.19/18: A bowling ball (mass $m_1 = 7.2$ kg, radius $r_1 = 0.11$ m) and a billiard ball (mass $m_2 = 0.38$ kg, radius $r_2 = 0.028$ m) may be treated as uniform spheres. What is the magnitude of the maximum gravitational force between them?

Monday, October 1, 2007

47

Newton's Law of Gravitation

4.-/26: The weight of an object is the same on planets A and
B. The mass of planet A is 60% that of planet B. Find the ratio of the radii of the planets.

Monday, October 1, 2007

Newton's Law of Gravitation

4.28: Three uniform spheres are located at the corners of an equilateral triangle with sides of 1.2 m.

Two of the spheres have a mass of 2.8 kg. The third sphere is released from rest.

What is the magnitude of its initial acceleration?

Monday, October 1, 2007

49

The normal Force The normal force acts when an object is in contact with a surface and exerts a force on it. The normal force is perpendicular (normal) to the surface. $\vec{F_N}$ The normal force acts no matter what the angle of the surface is and is always perpendicular to the surface.

The Normal Force

The normal force F_N of the ground on the block supports all of the forces pushing down on the ground:

 $F_N = 15 + 11 = 26$ N

Monday, October 1, 2007

51

The Normal Force

The normal force is reduced because the rope is exerting an upward force on the block:

 $F_N = 15 - 11 = 4$ N

The normal force also changes if there is acceleration upward or downward.

The Normal Force

4.34: A 65 kg person stands on a 35 kg crate.

Normal force F_{N2} supports both masses:

$$F_{N2} = (65 + 35)g = 980$$
 N

Normal force F_{N1} supports only the person:

$$F_{N1} = 65g = 637$$
 N

Monday, October 1, 2007

53

To do -

- The bathroom scales in the elevator problem how did they get there?
- Apparent weight
- Free fall
- Friction, static and kinetic
- Equilibrium
- Non-equilibrium

Apparent Weight

w = mg = 700 N

The scale shows the force needed to support the person - it is the normal force, F_N of the scale on the feet of the person.

 $F_N = 700 \text{ N} = \text{weight of person, } mg$

Monday, October 1, 2007

Apparent Weight

Or, apparent weight, $F_N = w + ma = 1000$ N

Apparent Weight

The elevator is accelerated downward.

Net **downward** force acting on the person: $F_{net} = w - F_N = ma$ So apparent weight is: $F_N = w - ma = 400$ N

Monday, October 1, 2007