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When we treat the free rotor as two masses at a fixed 
distance, we find the energy is dependent on the 
orbital quantum number:

𝐸𝑅𝑂𝑇 =
ℏ2𝑙(𝑙+1)

2𝐼



Electric field

Magnetic field

Molecules can absorb and emit electromagnetic radiation in a similar fashion to atoms.

When a molecule absorbs a photon, it’s electrons become excited and jump to higher energy levels. 

When a molecule emits a photon, it’s electrons lose energy and drop back down to lower levels.

This is similar to the behaviour of 
individual atoms. Molecules also 
have electron transition energies 
that are on the order of electron 
volts (eV). Recall the ionization 
energy of hydrogen is 13.6 eV. 

However, molecules are more complicated than individual atoms. On much 
lower energy scales, diatomic molecules can change their rotational state 
(angular momentum) and their vibrational state as well as their electronic state. 

The energies of these transitions are much lower (1/100 and 1/1000 eV) 



A molecule can change its rotational state (quantum number l) only if it has a permanent electric 
dipole moment (asymmetric molecules). If it does not have a dipole moment, both the vibrational and 
rotational state of the molecule must change simultaneously. Their spectrum will show this.

Last class we discussed the behaviour of a molecule in terms of its angular momentum, which gave 
the rotational energy in terms of the orbital quantum number.

We briefly discussed vibrational state, using a simple harmonic 
oscillator to describe the motion of the component atoms. 
Today we will discuss the effect this has on the energy of the 
system and leave more detailed treatment of the wave 
functions for another time. 

Symmetric molecule with dipole moment



When we allow the molecule to vibrate in addition to 
rotate, r is no longer constant. We use a simple harmonic 
oscillator potential to describe the interaction of the two 
masses. 

To first order the masses behave as though they are 
connected by a spring and exert a force on one another 
described by Hooke’s law. 

𝑉 𝑟 =
1

2
𝐶r2

The Schrodinger equation splits into three parts – similar to 
the hydrogen atom – to describe motion in each of the 
three coordinate directions.  

Recall the energy levels of the quantum SHO:

𝐸𝑆𝐻𝑂 = 𝑛𝜈 +
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The main difference between the wave functions for the diatomic molecule and the 
hydrogen atom is that the radial and angular parts are not coupled as they are with the 
hydrogen atom. 

With the Coulomb potential, the energy of the hydrogen atom is given entirely by the 
principle quantum number n and is degenerate in both l and m. 

This is not the case with the diatomic molecule, which splits cleanly into rotational and 
angular parts. 

The coupling of the equations is due to the details of the potential (SHO for the diatomic 
molecule vs. Coulomb for H-atom).

𝑉𝑆𝐻𝑂 𝑟 =
1

2
𝐶r2𝑉𝐶𝑂𝑈𝐿𝑂𝑀𝐵 𝑟 = −

𝑍𝑒^2

4𝜋𝜖0𝑟



The result we’re most interested in is the energy, which has contributions from both vibration and 
rotational modes. 

𝐸 = 𝐸𝑆𝐻𝑂 + 𝐸𝑅𝑂𝑇

𝐸 = 𝑛𝜈 +
1

2
ℏ𝜔 +

ℏ2

2𝐼
𝑙(𝑙 + 1)

The first term is the energy of 
vibration. It is the same form as the 
quantum SHO, and depends on the 
vibrational quantum number 𝑛𝜈

The second term is the energy of 
rotation. It depends on the orbital 
angular momentum quantum 
number l.



𝐸 = 𝑛𝜈 +
1

2
ℏ𝜔 +

ℏ2

2𝐼
𝑙(𝑙 + 1)

Increasing the energy of the diatomic molecule requires the molecule to absorb 
electromagnetic radiation – photons – which increases both it’s vibrational and orbital 
motion. 

Δ𝐸 = 𝑛𝜈
′ +

1

2
− 𝑛𝜈 +

1

2
ℏ𝜔 +

ℏ2

2𝐼
[𝑙′ 𝑙′ + 1 − 𝑙(𝑙 + 1)]  

The most general way to write the change in energy is 

Where 𝑛𝜈
′ is the final vibrational state, 𝑛𝜈 is the initial vibrational state, 

𝑙′ is the final rotational state and 𝑙 is the initial rotational state. 



For symmetric molecules with no permanent electric dipole moment, the absorption or 
emission of a photon requires both of the quantum numbers to change:

Δ𝑛𝜈 = ±1 Δ𝑙 = ±1

Where + stands for absorption (increase in the energy/angular momentum of a molecule) 
and – stands for emission of a photon (the molecule loses the energy/angular momentum 
of the emitted photon)

Δ𝐸 = 𝑛𝜈
′ +

1

2
− 𝑛𝜈 +

1

2
ℏ𝜔 +

ℏ2

2𝐼
[𝑙′ 𝑙′ + 1 − 𝑙(𝑙 + 1)] 

We can simplify this term a little bit

𝑙′ 𝑙′ + 1 − 𝑙 𝑙 + 1 = 𝑙′2 + 𝑙′ − 𝑙2 − 𝑙

Δ𝑙 = ±1 means that l must change by 1 unit of angular momentum, so 
we must have:

𝑙′2 = 𝑙 ± 1 2 = 𝑙2 ± 2𝑙 + 1

𝑙′ = 𝑙 ± 1

𝑙′ 𝑙′ + 1 − 𝑙 𝑙 + 1 = ±2𝑙 ± 1 + 1This gives us



This means we have two solutions:

If Δ𝑙 = +1 : [𝑙′ 𝑙′ + 1 − 𝑙(𝑙 + 1)] = 2𝑙 + 2 = 2(𝑙 + 1)

Δ𝐸+1 = ℏ𝜔 +
ℏ2

𝐼
𝑙 + 1

If Δ𝑙 = −1 : [𝑙′ 𝑙′ + 1 − 𝑙(𝑙 + 1)] = −2𝑙

Δ𝐸 = ℏ𝜔 +
ℏ2

2𝐼
[±2𝑙 ± 1 + 1] 

Δ𝑛𝜈 = ±1Along with                           , we have:

Then the change in energy is:

Then the change in energy is: Δ𝐸−1 = ℏ𝜔 −
ℏ2

𝐼
𝑙

Lines within both of these sets are separated by 
ℏ2

𝐼



From this, we predict a spectrum that looks like:
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Let’s compare this to real data. What does a spectrum of a diatomic molecule look like in the lab? 
Consider, for example, hydrogen chloride (HCl)…
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Actual spectrum of HCl
molecule in microwave 
frequency band

Spectral 
peaks are split 
due to 2 mass 
isotopes of 
Chlorine, Cl-
35 (75%) and 
Cl-37 (25%)

ℏ2

𝐼

ℏ2

𝐼



A number of other features show up in spectra like this one:

Note that the lines aren’t evenly spaced as we predicted they would be! 

• We assumed the moment of inertia is constant, but this isn’t 
quite true. As the molecule rotates, it stretches out a bit and 
this decreases the rotational energy, especially for large l!

The shape of the spectrum changes. Why are some lines more intense than others?

• The population of an orbital level depends on the degeneracy 
(2l+1), and an exponential factor:

𝑁 𝐸 = 2𝑙 + 1 𝑒
−

𝐸
𝑘𝑏𝑇
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Rotational-vibrational 
transitions in HCl



𝑛𝜈 = 0
1

2

3

1

2

𝑛𝜈 = 1

𝑙 = 0

𝑙 = 0

𝑛𝜈 = 0 → 1 𝑛𝜈 = 0 → 1

𝑙 = 1 → 0 𝑙 = 0 → 1

Center frequency for 𝑛𝜈 = 0 → 𝑛𝜈 = 1
Frequency: 𝜈 = 8.66 × 1013 Hz

Peak frequency 
𝜈 = 8.60 × 1013 Hz

Peak frequency 
𝜈 = 8.72 × 1013 Hz

𝑉 𝑟 =
1

2
𝐶𝑟2



This term we also studied

Chapter 6: The Schrodinger Equation 

Chapter 7: 
7.1 : Schrodinger equation in 3D
7.2 : Angular momentum (Questions)
7.3 : The hydrogen atom


